电子设备的隔振技术及减振器选型
电子设备受到的机械力的形式有多种,其中危害最大的是振动和冲击,它们引起的故障约占80%。它们造成的破坏主要有两种形式,其一是强度破坏:设备在某一激振频率下产生振幅很大的共振,最终振动加速度所引起的应力超过设备所能承受的极限强度而破坏;或者由于冲击所产生的冲击应力超过设备的极限强度而破坏。其二是疲劳破坏:振动或冲击引起的应力虽远低于材料的强度,但由于长时间振动或多次冲击而产生的应力超过其疲劳极限,使材料发生疲劳损坏。系统的振动特性受三个参数的影响,即质量、刚度和阻尼。对于电子设备的振动和冲击隔离来说,隔振系统的质量一般是指电子设备的质量,而刚度和阻尼则由设备的支撑装置提供。在机械环境的作用下,尤其是在舰船、坦克、越野车辆、飞机等运载工具中,设备及其内部的电子器件、机械结构等都难以承受振动冲击的干扰。
为了减少或防止振动与冲击对电子设备的影响,通常采取两种措施:a) 通过材料选用和合理的结构设计,增强设备及元器件的耐振动耐冲击能力;b) 在设备或元器件上安装减振器,通过隔离振动与冲击,有效地减少振动与冲击对电子设备的影响。
2、隔振技术
2.1隔振
隔振就是通过在设备或器件上安装减振装置,隔离或减少它们与外界间的机械振动传递。
在电子设备与基础之间安装弹性支承即减振器,以减少基础的振动对电子设备的影响程度,使电子设备能正常工作或不受损坏;这种对电子设备采取隔离的措施,称为被动隔振。
一般情况下,仪器及精密设备的隔振都是被动隔振。
被动隔振系数:
振动来自基础,其运动用U=Uosin(ωt)表示,也是周期振动。被动隔振也可用隔振系数η表示其隔振效果,它的含义是被隔离的物体振幅与基础振幅之比(或是振动速度幅值、加速度幅值的比值)
可用下式计算:
η=xO/UO
={[1+4ξ2(f/fo)2]/[1-(f/fo)2]2+4ξ2(f/fo)2}0.5(1) 式中 xO——物体的垂向振幅(m);
UO——基础的垂向振幅(m)。
式中f――振动力的频率(HZ);
fo――隔振系统的固有频率(HZ);
k――隔振器的刚度(N/m);
m――物体的质量(kg);
g——重力加速度(9.8m/s2);
ξ——减振器的阻尼比(橡胶减振器的阻尼比为0.02~0.15)。
从η的表达式可以看出,隔振系数η与频率比(f/fo)及阻尼比ξ有关。
当f/fo<<1时,隔振系数η=1。此时振动力变化缓慢,且其几乎等值传递到基础上。
当f/fo=1时,隔振系数η为最大,振动力有放大现象,此时系统处于共振状态;η值随ξ增大而减小,所以,对于启、停频繁的设备,为防止设备在启动或停机过程中经过共振区域时产生过大的共振,减振器选用时应考虑阻尼大一些的。
当f/fo=时,隔振系数η=1,振动力等值传递,此时系统无隔振效果;
当f/fo>时,隔振系数η<1,振动力减值传递,此时系统有隔振效果。
因此,要使隔振系统有效果,必须使η<1,即必须使频率比f/fo>。在电子设备的减振设计中一般取频率比f/fo为2.5~4.5,也就是说要获得满意的隔振效果,应该使隔振支承系统的固有频率为振动力频率的1/2.5~1/4.5。
阻尼在共振区内,阻尼可以抑制传递率的幅值,使物体的振幅不至于过大;在非共振区,阻尼反而使传递率增大。
当f/fo≈1时,发生共振,应力求避免;
不论阻尼大小,只有f/fo>,才有隔振效果;
一般情况下,建议把频率比f/fo取为2.5~4.5。
隔振系统中控制振动及其传递主要有三个基本因素:隔振器的刚度k、被隔离物体质量m及系统支承即隔振器的阻尼比ξ。它们各自的影响简述如下:
刚度k——隔振器的刚度越大,隔振效果越差,反之隔振效果越好。因为:
f0=(k/m)0.5/2π
k越大,f0越大,f/fo越小,η就越大(在隔振区)隔振效果差;
k越小,f0越小,f/fo越大,η就越小(在隔振区)隔振效果好。
因此,就隔振而言,刚度k应尽可能小;必须指出的是,过小的刚度k可能无法承受质量m,就像一个重物将一根弹簧压扁了,无法起到隔振作用,对于一个设计正确的隔振系统,支承的刚度计算既要考虑隔振效果的实现,同时还要兼顾其承载能力。
质量m——被隔离物体的质量m使支承系统保持相对静止,物体质量越大,在确定振动力的作用下物体振动越小。同样从式(2)看出,m越大,则f0越小,在隔振区η就越小,隔振效果好。增大质量还包括增大隔振底座的面积,以增大物体的惯性矩,可减小物体的摇晃,但质量往往是确定的,增加是有限的。
阻尼比ξ——隔振系统的支承阻尼有以下的作用:在共振区减小共振峰值,抑制共振振幅;但是,在隔振区,随着ξ的增大,η也变大,隔振效果变差。因此阻尼的作用有利也有弊,设计时应特别注意。
电子设备大都属于被动隔冲,在支撑基座与电子设备之间装一减振器进行冲击隔离,当外界冲击力作用在支撑基座上时,由于减振器中的弹性元件和阻尼元件产生变形,吸收能量并延长冲击力作用的接触时间,使传递给设备的冲击力减小了很多,达到缓冲的目的。减振器的刚度越小,阻尼越大,则冲击力的作用接角时间愈长,减振器的变形愈大,设备受到的冲击力也就愈小,缓冲的效果愈好。
3减振器选用原则
(1)使用条件
振源性质:电子设备使用时所承受到的振动、冲击类型、强度、频率等,从而决定了以隔振为主还是缓冲为主;一般情况下舰用、车用设备以缓冲为主,飞机载设备以减振为主。
原环境条件:因橡胶减振器有一定的使用温度范围,过冷会硬化,过热则软化,大多数橡胶减振器遇油及光照易老化,当温度范围超出0~80℃或存在油类介质或光照条件下不宜使用橡胶减振器。
外形尺寸:了解设备的外形、重心位置特别是可以供安置减振器的空间大小,将为选用减振器的类型、数量提供尺寸依据。
耐振抗冲能力:设备内的元器件的耐振抗冲能力的强弱,决定了设备允许承受的最大振幅和加速度,也就决定了整个隔振缓冲系统的隔振系数的大小,是选用减振器的主要依据。(2)参数条件
减振器的主要参数包括阻尼比、刚度(或频率)、额定负荷等。
阻尼比ξ:从减振原理分析看出,阻尼的作用是控制和减少共振振幅,由于设备起动与停止要都要经过(γ=1)共振区,尽管时间很短,但系统阻尼过小时也会产生较大振动。虽然在隔振区阻尼比越小隔振效果越好,但这仅对激振频率为单一频率才适合。当振源较复杂,有多种频率时,必须从多方面防止共振,阻尼比夜莺适当选大一些。从缓冲的角度讲,选用较大的阻尼比也是有利的,综合考虑,减振缓冲系统以选用较大的阻尼比为宜。
刚度k:刚度是减振器的最主要参数,就减振而言,刚度的大小可由隔振效果要求,通过计算出固有频率而求得,选用的减振器的刚度只要等于或小于计算刚度,就能保证隔振效果的实现;
额定负荷W:各种类型的减振器的额定负荷都不同,所选减振器的负荷大小主要根据设备重量、重心位置、减振器安装数量来决定,要求所选减振器额定负荷应大于实际承载。
4、常用减震器选型
减振器的作用是隔离或减小振动及冲击对设备及元件的影响,通过其材料、结构的特点,吸收振动、冲击的能量并缓慢地释放,达到减振缓冲的目的。
4.1橡胶型减振器
橡胶减震器的特点是在于他的外形能按需要设计、刚度可调、提供比弹簧更大的阻尼比、抗剪、抗拉、抗压、安装更简单。他的缺点在于固有频率较高,使用寿命较短,使用环境受限多,一般使用环境温度应控制在-30-70摄氏度之间,一些有化学腐蚀环境应选择合适材质的橡胶减震器才能使用。
4.3阻尼隔振材料
4.3.1自由阻尼结构
将阻尼材料覆盖(粘贴或喷涂)在需要减振的结构物表面,当结构件发生变形时,阻尼材料能将机械振动或声振动转变为热能消耗。由于覆盖在结构物上的阻尼材料层面无约束,故称为自由阻尼层或自由阻尼结构。被覆盖的结构物称为基层,阻尼层可以是单面或双面。
4.3.2约束阻尼结构
在自由阻尼层面上再覆盖一层材料,就构成约束阻尼结构,而这一覆盖层称为约束层。根据需要也可作成多层,基层与约束层统称为结构层,它为阻尼结构提供强度,阻尼层则吸收能量。
4.3.3其它阻尼隔振材料
近年来隔振垫已被应用于产品的减振缓冲。隔振垫是由具有弹性的材料制成的一种没有确定形状尺寸的软垫,如专用橡胶隔振垫,这种隔振垫具有特久的高弹性,隔振、缓冲性能良好;为满足不同要求其尺寸和形状自由选择;具有一定的阻尼性能,可吸收机械能特别是对高频振动能量的吸收效果好;橡胶同金属表面能实现牢固粘接,易于安装与制造;与其它减振器比,具有价格低廉等优点,目前被动广泛用于产品的隔振缓冲。